Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Wang-Ge Shou, Yun-Yun Yang and Jian-Hua Zhong*

Department of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: swgwxn@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.064$
$w R$ factor $=0.189$
Data-to-parameter ratio $=14.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Diethyl 2-[(3-chlorophenylamino)(3-nitrophenyl)methyl]malonate

The principal structural feature of the title compound, $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{6}$, is the dihedral angle of 89.15 (8) ${ }^{\circ}$ between the two benzene rings of the molecule. The $\mathrm{N}-\mathrm{Csp}^{2}$ bond distance of 1.387 (3) \AA is significantly shorter than the $\mathrm{N}-$ Csp ${ }^{3}$ bond distance of 1.461 (3) A. Classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding occurs in the crystal structure.

Comment

In recent years, there has been increasing interest in the synthesis of proteinogenic and non-proteinogenic amino acids. This is due to the wide utility of such compounds as components of proteins and peptides and as starting materials for the synthesis of naturally occurring biologically active compounds (Cardillo \& Tomasini, 1996). Hence there is great interest in developing convenient methods for the synthesis of β-amino esters. The title compound, (I), a β-amino ester, was synthesized through a Mannich-type reaction between m-nitrobenzaldehyde, m-chlorobenzenamine and diethyl malonate. The X-ray crystal structure determination of (I) was undertaken in order to elucidate the conformation of the molecule.

(I)

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles of (I) are in agreement with those found in a closely related compound, diethyl 2-[(4-bromophenyl-amino)(2-chlorophenyl)methyl]malonate (Shou et al., 2006). The dihedral angle between the two benzene rings is 89.15 (8). The average $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ bond distances are 1.389 (3) and 1.194 (3) Å, respectively. The $\mathrm{N} 1-\mathrm{C} 2$ bond distance is significantly longer than that of $\mathrm{N} 1-\mathrm{C} 9$ (Table 1).

While a classical hydrogen bond occurs between the imino N atom and the carbonyl O atom, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is also observed in the crystal structure (Table 2).

Received 13 May 2006 Accepted 28 May 2006

Experimental

Compound (I) was synthesized according to the method described previously by Shou et al. (2006) and was identified by IR, ${ }^{1} \mathrm{H}$ NMR,
${ }^{13}$ C NMR, MS, melting point and elemental analysis. Single crystals of (I) were obtained by slow evaporation of a hexane-dichloromethane $(1: 1 \mathrm{v} / \mathrm{v})$ solution of the compound at room temperature.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{O}_{6}$
$M_{r}=420.84$
Triclinic, $P \overline{1}$
$a=9.0765(11) \AA$
$b=11.0454(13) \AA$
$c=12.0174(14) \AA$
$\alpha=101.01(2)^{\circ}$
$\beta=111.271(2)^{\circ}$
$\gamma=102.040(2)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

$$
T_{\text {min }}=0.885, T_{\text {max }}=0.930
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& V=1050.0(2) \AA^{3} \\
& Z=2 \\
& D_{x}=1.331 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.22 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, green } \\
& 0.51 \times 0.50 \times 0.32 \mathrm{~mm}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.064$
$w R\left(F^{2}\right)=0.189$
$S=1.02$
3748 reflections
264 parameters

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (grant No. 20272051) and the Teaching and Research Award Programme for Outstanding Young Teachers in Higher Education Institutions of the Ministry of Education, China.

References

Bruker (1998). SMART (Version 5.051) and SAINT (Version 5.01). Bruker AXS Inc., Madison, Wisconsin, USA.
Cardillo, G. \& Tomasini, C. (1996). Chem. Soc. Rev. 25, 117-128.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Shou, W.-G., Yang, Y.-Y. \& Wang, Y.-G. (2006). Tetrahedron Lett. 47, 18451847.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

